Home

Contact:

I'm LinkedIn and Google-Plussed.

Mail and packages, use maildrop:
Norman Sperling
2625 Alcatraz Avenue #235
Berkeley, CA 94705-2702

cellphone 650 - 200 - 9211
eMail normsperling [at] gmail.com

Norm Sperling’s Great Science Trek: 2014

San Luis Obispo
Santa Barbara
Palm Springs
Death Valley
Tucson
El Paso
Corpus Christi
Baton Rouge
Tampa
Everglades
Key West
Winter Star Party, Scout Key
Miami

MARCH 2014:
up the Eastern seaboard
mid-South

APRIL 2014:
near I-40, I-30, and I-20 westbound

MAY 2014:
near US-101 northbound
May 17-18: Maker Faire, San Mateo
May 23-26: BayCon, Santa Clara

California till midJune

JUNE 2014:
Pacific Northwest

JULY 2014:
Western Canada, eastbound

AUGUST 2014:
near the US/Can border, westbound
August 22-on: UC Berkeley

Speaking engagements welcome!
2014 and 2015 itineraries will probably cross several times.

Astronomy

The Core of the Problem is the Problem of the Core

© Norman Sperling, April 30, 2012

The media made a big hullabaloo over the public announcement of forming a company to mine near-Earth asteroids.

In several ways, the announcement sounded right:

* Launch a fleet of spectroscopic telescope satellites to "scope out" potential targets. Wise!

* They distinguished between icy and heavy-metal asteroids, and mentioned the potential values of each. Correct.

* First, target the icy, primitive asteroids (types C, P, D, and probably K) because their ice can make rocket fuel. So far so good. They're also abundant, contain the widest variety of minerals, and are the loosest-bound, so they should be easiest to mine. But the "rare earth" metals are pretty skimpy in these asteroids. Not as bad as Earth's surface rocks, but poor ore.

* Media reports recognize that minerals which are valuable because of scarcity will become much less valuable if the market is flooded. They include the concept of rationing to slow the flow. I expect that must occur naturally, because it will take time to break up and refine an asteroid. Attaching mining devices to an asteroid hardly makes the entire asteroid immediately available as refined metals.

I didn't see the media discuss another big factor, which is both an asset and a liability.

Metal asteroids (type M) are remnant cores of formerly-larger planet-like bodies. They accreted so much that they heated up. They get heat from collision, sunlight, condensation, and the decay of radioactive atoms inside. As long as they're small, they radiate heat out faster than they collect it. But bulk acts like a blanket, so once an object builds up to more than a few hundred kilometers in diameter, it can't dump heat as fast as it builds it up. If you don't mind a sip of technicality: that's because as an object gets bigger, the volume (in which to generate and hold radioactive heat) grows as the cube of the radius, but the surface (from which to radiate heat away) only grows as the square of the radius.

Under the heavy pressure of hundreds of kilometers of minerals sitting on top of them, and the increasing heat, primitive rocks melt. They quickly differentiate: light stuff floats, and dense stuff sinks. This results in layers, in order of density. That's why Earth's layers are the inner core, outer core, mantle, crust, hydrosphere, and atmosphere.

Those aren't pure, refined elements. They are mixtures, alloys, suspensions, and a variety of other combinations.

Cooled-off, solidified nickel-iron outer cores are what we think we're seeing in type-M asteroids. All our metal meteorites are from those outer cores. Iron shells are probably awfully tough to break by collisions at the speeds common in the asteroid belt. But mining engineers can probably crack that problem.

The big problem comes from exposing the inner core, to which most precious heavy metals migrate. The inner kernels may be relatively small. The mix there will have every heavy element that doesn't linger up here on the surface. That's why they're the rarest up here. Those include radioactive elements with long half-lives. In other words, the core alloy must be radioactive. I saw no mention of this important factor in the company's statement or media coverage.

We don't even know which substances dissolve into one another under the conditions of the inner core. The radioactive and the quiet minerals probably make novel combinations with unknown characteristics. Non-radioactive components have been irradiated for 4 billion years. Would that induce unfamiliar radioactive isotopes?

Metal asteroids that expose some of their radioactive inner core might be detectable by that radiation. I've never seen a study relating unattributed detections of ionizing radiation to the locations of type-M asteroids. I wonder if we've already detected some, but not recognized that yet.

Surely, to extract useful minerals from an inner core will require a lot of refinement. Refining enough uranium and plutonium for bombs and reactors required building entire scientific cities - Hanford, Oak Ridge, and so on - running enormous factories round the clock for decades. Similar operations with robots, in space, will probably be extremely expensive. How would mining robots recognize and handle the radiation? Refinery hardware and electronics would have to survive intense radiation as well as extreme temperatures and vacuum. Transmutation of the robots' own atoms would change their usability.

Components for use among people on Earth would have to emit no more than background levels of ionizing radiation. What an extreme refinement!

Weird Astronomy: Tales of Unusual, Bizarre, and Other Hard to Explain Observations

Weird Astronomy: Tales of Unusual, Bizarre, and Other Hard to Explain Observations, by David A. J. Seargent. 317p. Springer 2010. $39.95. 978-1-4419-6423-6.

reviewed and © by Norman Sperling, April 26, 2012

Australian astronomy writer David Seargent knows sky-watching - a long-time amateur astronomer, he discovered a comet in 1978. He has been telling about these curiosities in a long string of articles for Southern Astronomy, which became Sky & Space magazine. He has integrated and smoothed them out well for this book. But one standard that may have been OK in the magazine grates on me! He uses exclamation points way too much!

Between exclamation points, Seargent tells these neat stories with an easy flow and a light touch. He explains things in a clear, friendly way that teaches accurately but painlessly. Collectively, they form good lessons on scientific reasoning, the importance of data quality, and understanding how the sky works. The Universe seems to show more phenomena than humans have so far commanded. The stories are very enjoyable for readers who haven't heard them before. They will certainly entertain readers interested in any science.

Seargent also inserts suggestions for projects. Every reader, from novice through expert, can find some interesting possibilities to work on.

Some items from the main chapters:
* Our Weird Moon: William Herschel noticed 3 red glowing spots on the dark part of the Moon on April 19, 1787. He thought they were erupting volcanoes, but that would have left evidence that we would now see, and we don't. Seargent points out that that very same night had intense aurora as far south as Italy, and asks if the same flow of high-energy particles hitting Earth might trigger glows on the Moon.
* Odd but Interesting Events Near the Sun, including transits and comets.
* Planetary Weirdness dwells mostly on Mars, and wonders if microbes do, too.
* Weird Meteors: Curving, zigzagging, and black meteors have been reported.
* Strange Stars and Star-Like Objects: including assorted flashes and blinks.
* Moving Mysteries and Wandering Stars: several tiny comets have been spotted close to Earth.
* Facts, Fallacies, Unusual Observations, and Other Miscellaneous Gleanings: planets and stars by daylight, the thinnest crescent Moon, odd meteorites, and the "potassium flare" star whose spectrum actually measured a smoker striking a match.

The publisher's contributions to this book aren't as good as the author's. There are several typos, though none of them interferes with understanding. While the text is printed very clearly, many of the pictures are too dark and murky, and hard to distinguish. The color pictures lack resolution. The publisher appears to have trusted a new printing technology, which seems not ready for prime time yet.

Defining any book project requires many decisions to be made. They decided this one would be "popular" rather than scholarly, so they left out all references. But this subject matter is deliberately obscure, and they give no hint as to where to chase down any item that attracts your fancy. There were many items that I could not even guess where to pursue, beyond a web-search.

But many of them I do know where to look for: Mysterious Universe by the late William R. Corliss. (Sourcebook Project, 1979). When I started wondering about those Earth-approaching comets, I checked the Corliss compendium and found 2 of Seargent's 3, plus several others, all with full quotations from the original literature. Corliss has quite a number of Seargent's phenomena. More on the personalities and places can be found in Joe Ashbrook's Astronomical Scrapbook (Cambridge University Press), a compilation of his articles in Sky & Telescope magazine. So readers have a choice: the simplest pleasure-read is Seargent's. Ashbrook's is more scholarly. Corliss reprints the original sources verbatim, retaining all the original information and flavor ... sometimes stuffy. Also, Corliss never tells how a story came out: were the observations flawed? Did they start a new paradigm? Seargent can solve scholars' problems by posting his references on a website.

As expected, Seargent finds more articles in the British heritage, Ashbrook in the American. This leads me to wonder how badly culture and language still inhibit communication. What curiosities have observers logged in other languages? Can we get those correctly translated, compiled, indexed, and entertainingly narrated? What percentage of the total do these English-language sources contain? How can readers of lots of other languages become familiar with these?

Corliss compendia cover most sciences. Seargent has now published one on meteorology. Do other sciences have corresponding light-reading books of curiosities like Seargent's or Ashbrook's?

7 Spectral Types in 1 Big Loop

© Norman Sperling, April 15, 2012
Part of a series on Educational Star Parties:
Star Parties Designed for Students (July 7, 2012)
Trading Cards for Telescopes and Celestial Objects (September 20, 2012)
Telescope Triplets (November 25, 2011)

When I teach about stars, the 7 main spectral types usually seem rather abstract. I show their different spectra, but that's hard to relate to what students actually see in a starry sky. I show Planck curves and explain how surface temperature results in color differences that you can actually notice. Star colors aren't the sharp tones of advertising signs, but you can definitely notice the tinges.

Star tinges are less than impressive to the naked eye, because starlight is so dim that it mostly triggers the black-and-white-registering rod cells in your retina. Only the 20 or so brightest stars deliver so much light that they also trigger a few color-sensitive cone cells, and those only barely.

But even a small telescope collects enough light to trigger a whole lot more cones in your retina, making the colors appear appreciably bolder. So a star party that is deliberately planned for student education should use 7 small telescopes to point at a bright star of each of the 7 spectral types, to emphasize their different colors. Arrange the scopes so a single line of viewers looks through all 7 scopes in order, either OBAFGKM or MKGFABO. After everybody has seen that, re-aim those scopes to their next targets.

Yes, A and F stars really do look white, but now you appreciate how real that is, unlike an artifact of not triggering enough cone cells.

For each spectral type, at any position of the sky, you can find examples at third magnitude or brighter.

All 7 spectral types are blatant around the Great Winter Oval:
O: Mintaka and Alnitak
B: Rigel, Bellatrix, El Nath, Alnilam, and Saiph
A: Sirius
F: Procyon
G: Capella
K: Aldebaran and Pollux
M: Betelgeuse

The Great Winter Oval has many advantages. It's accessible late in the Fall semester, late in the evening; all winter long; and just after dusk well into Spring semester. Since it straddles the equator, it's easily seen from practically everywhere that people live. Only in May, June, and July is it not available - parts of it even then.

When part of the Great Winter Oval is hidden by the Sun's glare, here are some bright alternatives:
O: zeta Ophiuchi and zeta Puppis
B: Alpheratz, Algol, Regulus, Spica, and Alkaid
A: Denebola, Alioth, Mizar, Gemma, Vega, Deneb, Altair, and Fomalhaut
F: Polaris, Algenib, and Sadr
G: the Sun, beta Corvi, Vindemiatrix, eta Bootis, eta Draconis, and beta Herculis
K: Alphard, Dubhe, Arcturus, and Kochab
M: Antares, Mira, and beta Andromedae

Decrease the number of telescopes needed, and make the contrast more vivid, by showing wide, bright, color-contrast double stars:
Algieba: K + G
Albireo: K + B
gamma Andromedae: K + B
Cor Caroli: A + F

Bigger scopes show color contrast in:
32 Eridani: G + A
h3945 Canis Majoris: K + F

Don't try to add spectral class W unless you're far enough south to see the only bright one, gamma Velorum, -47 degrees. There are only about 150 Wolf-Rayet stars known in our galaxy. No others are close enough to look brighter than 6th magnitude. The biggest bunch is around the Summer Triangle.

I'll comment more on planning star parties for student education in later postings.

Remembering Norman Edmund

© Norman Sperling, January 25, 2012

Norman W. Edmund founded Edmund Scientific Company on a card table in his home in 1942. When he retired in the mid-1970s, it had over 200 employees. He died at the age of 95 last week in Fort Lauderdale, Florida, to which he had retired.

I vividly remember devouring every new issue of the Edmund catalog while I was growing up in the 1950s and '60s. The catalog always had a lot of "tutorial" segments - several paragraphs each, usually with diagrams, so the users could understand the technicalities of the equipment. They weren't particularly slanted toward Edmund products, and they taught a great many people a lot about their hobby and its hardware. Only a few catalogs (like Orion) continue to do that, though it's absolutely the best policy and should be fostered. Tutorials are NOT waste-space, and they foster brand loyalty: I trust the company that makes the effort to tell me the straight information.

I met Norm several times in the 1970s, while I consulted for his son Robert. In those years Norm kept his desk in the main office, kept a bunch of neat science-thingies around, and had appropriate input. But I also sensed that he kept his distance from daily operations, carefully avoiding stepping on toes.

What always impressed me was how nice he was. Plain, no affectations, no flaunting. And he passed all that on to the rest of his family, several of whom I met. They're all nice. They treat people well. They treated me very well. It wasn't just a put-on performance, it was genuine.

To Norman and Robert, "treating people nicely" is business policy as well as personal. While it's true that being nice to people is good customer service and good business, I think they are nice to people simply because they think that is the right way to be. I learned a lot from that.

They didn't outsource service. Callers were transferred to people who knew the technicalities they needed. Customers could get replacements and refunds.

Robert once told me "Customers will always complain. They'll complain about price, or they'll complain about quality. As long as I'm president, they aren't going to complain about quality." Which is to say, the stuff he designed, produced, and marketed would actually work well. And it did. Sure, humans aren't perfect and hardware isn't perfect, but when problems cropped up, the company tried hard to fix them, and usually succeeded.

Norman Edmund was well-respected as a leader in science business, an advocate of science education, a business leader of Greater Philadelphia, an expert fisherman, and a gentleman who "lived long and prospered". I'm really glad I knew him.

My Students, Yo Mama, and Chuck Norris

© Norman Sperling, December 22, 2011

I finally finished finals, that mad dash to pay careful attention to 60 handwritten exams in a little over 5 days. As usual, most of my students learned their material well. But the ~350 pages also harbored a few bloopers:

* Quasi-Stellar Radio Sources ... were discovered after World War II by radiologists.

* Cepheids are an example of a galaxy cluster that experiences meteor showers.

* Mars' atmosphere is too thin for gravity to hold Hydrogen to the surface. That is why we are on Earth.

* Now the Earth has a carbon atmosphere. Since there was life, it changed carbon into oxygen and nitrogen.

* A cluster of galaxies form gobular clusters. A a cluster of gobular clusters form the Universe.

...:::...

For the last 2 years, I've asked my classes to regard the extremes of astronomy in current-culture terms, by turning them into "Yo Mama" and "Chuck Norris" jokes. Their offerings:

in orbital mechanics:
* Yo Mama's so fat that when we played baseball, the ball got stuck orbiting her.
* Yo Mama's so fat that she has other fat mamas orbiting around her.
* Yo Mama's so fat that she has a Roche Limit.
* Yo Mama's so fat that she has rings of her own.
* Ancients thought the Earth was the center of the Universe. They were close: Yo Mama's so fat that the whole Universe orbits her.

in Cratering:
* The real reason for impact craters is that Chuck Norris uses the solar system as his punching bag.

on the H-R Diagram:
* Yo Mama's so fat that she's spectral type W.

in black holes:
* Yo Mama's so fat that she caused a singularity and created a black hole.
* Yo Mama's so fat that she would consume a singularity.
* Yo Mama's so fat that when she throws up, she makes a white hole.
* A black hole is the region of a singularity from which nothing can escape, not even light ... except for Chuck Norris.
* Chuck Norris uses worm holes to get to work.

in the Milky Way:
* That's not actually a supermassive black hole at the center of our galaxy, that's just where Chuck Norris sets his barbells: right next to Yo Mama.

in Cosmology:
* although it is known how hydrogen, the stars and planets, and even how *we* were formed, it is still unknown how Chuck Norris was formed.
* Creation occurred when Chuck Norris round-house kicked in a vacuum, creating the Big Bang.
* The Universe exists so that Chuck Norris can exist.
* As long as Chuck Norris allows the Universe to function, we will continue to make new discoveries every day.

Going, Going, Gone

© Norman Sperling, December 12, 2011

The total lunar eclipse on December 10th gave me an experience I have only had once before, even though this was not an especially dark eclipse as seen from the Pacific and Asia.

On December 30, 1963, the eclipsed Moon practically disappeared. From the roof of my apartment house in Silver Spring, Maryland, I could see stars as dim as 5th magnitude, but the Moon turned that dark, and I had trouble spotting it with my naked eye. Through the telescope the Moon was a dark and featureless grey-blue disc.

I watched the December 10, 2011, eclipse from San Mateo, California, through a slightly hazy sky. While most of the Moon looked pretty dark about 6:20 AM, the southern fringe was quite noticeably bright. The northern edge was almost invisible, and the area in between graduated in dull reds. Within a few minutes, the lighting pattern changed quite noticeably (in total lunar eclipses, the tints always change every few minutes), with the Moon fading appreciably in the gathering dawn. The sky didn't look all that bright, but the Moon was now so dim that it was harder and harder to notice much about it. By 6:37, only the slightly-bright lower-left edge could still be found, fading like the grin of a Cheshire cat. By 6:42, I couldn't even see that any more. The sky was brightening so much that the Moon was no longer visible with the unaided eye. The Full Moon disappeared from me again!

Telescope Triplets

© Norman Sperling, November 25, 2011
Part of a series on Educational Star Parties:
Star Parties Designed for Students (July 7, 2012)
7 Spectral Types in 1 Big Loop (April 15, 2012)
Trading Cards for Telescopes and Celestial Objects (September 20, 2012)

For decades, I have been proclaiming that focal ratio is one of the most important characteristics in choosing a telescope. Most authorities tout aperture instead. But none of us has ever conducted a true visual test, isolating the variables of focal ratio, aperture, and eyepieces.

I propose that 3 triplets of Newtonian telescopes be made to demonstrate the effects of focal ratio, aperture, and eyepiece. They can be used for classes and at star parties to teach about the properties of the telescopes themselves. Mount each triplet so that viewers can easily shift among all 3 eyepieces to instantly compare views.

The "focal ratio" triplet should consist of 3 telescopes, all with the same aperture and eyepiece. Make one f/5, another f/10, and another f/20. For this triplet, I think 3-inch (76 mm) apertures are best: even the f/20 would be a manageable 5 feet (1.52 m) long. Users will see that Jupiter looks best at f/20, and the Great Andromeda Galaxy best at f/5. Trying this battery of telescopes on the sky's enormous variety of targets will probably reveal very few objects that look best at f/10.

A second application of this same telescope set will use different eyepieces that all result in the same magnification: a long eyepiece on the long scope, a short eyepieces on the short scope, and a middling eyepiece on the middling scope. How different are the views of different targets?

The "aperture" triplet should consist of 3 telescopes, all with the same focal length (perhaps 4 feet = 1.22 m) and eyepiece. Make one 3 inches (76 mm) aperture, the second 6 inches (152 mm), and the third 12 inches (304 mm). Users may be surprised how much even the 3-inch shows.

The "eyepiece" triplet should consist of 3 identical middling telescopes, perhaps 4-inch (102 mm) f/8. Insert eyepieces of equal focal length but different optical designs (such as Huygens versus orthoscopic versus Nagler). A second application of this same telescope array will use eyepieces of equal design but different focal lengths (perhaps Plossls of 6 mm, 12 mm, and 25 mm ...).

Make each triplet so the scopes, and their eyepieces, can also swivel to allow 2, or even 3, different people to watch through one of the scopes at a time. This is because, perhaps once a decade, some sky event brings out throngs, and the host needs to move a whole lot of eyeballs through the scopes in minimal time.

These triplets could be built by amateur-telescope-making workshops, such as several clubs run, or perhaps by a veteran scope-maker. Most are quite small, only one is large. Try hard to hold all but one factor constant so they really test that single variable.

A whole metropolitan area probably needs only one set. Telescope triplets can be passed around among nearby colleges, astronomy clubs, planetaria, etc., to use at their classes, star parties, and member-events.

The Metric Light Year

© Norman Sperling, October 24, 2011

My friend John Westfall, an astronomer and geographer, points out that astronomy uses several non-metric units, most prominently the "light year". Officially, that's the distance that a beam of light travels, at the speed of light, in a year's time. In metric units, that's 9,460,730,472,580.8 km (about 9.5 Pm), according to Wikipedia.

While the light year is more than 5% shorter than 10^16 meters, no celestial object more than 20 light years away has its distance known within 5%. Uncertainties out there begin at 15% and quickly grow worse than 25%.

So, as far as anyone can measure, there is no difference between "100 light years" and "10^18 meters". Let's call 10^16 meters a "metric light year".

Great Guidebooks for Scientific Travelers

Reviewed and © by Norman Sperling, October 3, 2011

Duane S. Nickell: Guidebook for the Scientific Traveler: Visiting Physics and Chemistry Sites Across America. Rutgers U. Press 2010. Paperback $19.95. 978-0-8135-4730-5.

and Guidebook for the Scientific Traveler: Visiting Astronomy and Space Exploration Sites Across America. Rutgers U. Press 2008. Paperback $21.95. 978-0-8135-4374-1.

Most of the travel books I've filtered through in planning my Great Science Trek specialize in factories, oddities, architecture, history, pop culture, technology, and politics. Travel books for scientists are rare - just a few on geology and observatories. Do you know any others? Duane S. Nickell is starting a series to fill this niche. Rutgers University Press has set up "The Scientific Traveler" series, and Nickell has written its first 2 volumes.

Each chapter begins with a gem-quality tutorial. To understand gigantic particle accelerators, start with the essay on particle physics. To get why you should examine meteorite collections, start with the essay on meteorites.

Taking advantage of his modern, tech-savvy audience, Nickell wastes no space on maps or directions. He gives addresses, phone numbers, and websites, from which visitors can get all they need. He cites admission fees as of presstime, which everybody knows can change.

Nickell found a whole lot of chemistry places I'd never heard of, and points out aspects of astronomy and physics places that I never thought of - such as rooms where important things occurred on the campus where I teach (certainly not my room). He has chapters on the scientists themselves plus their universities, labs, accelerators, museums, and monuments. "Chemicals in Industry", for example, features places that make glass, borax, paper, cosmetics, pharmaceuticals, toothpaste, beer, and whiskey.

Some kinds of technology lie in plain sight but go uninterpreted. Wind farms, for example, occupy impressive stretches of hills and deserts, but none has a visitor center or even a gift counter. A display of varieties of windmills, a demonstration of a generator, and a few relevant models and publications for sale, would make a respectable roadside stop. Other energy forms with sites-to-see include oil, coal, nuclear, hydroelectric, and solar.

Astronomers flock to places with the darkest skies, and buy up all the land to prevent disturbing lights from encroaching. Several such astronomy villages have sprung up. I can only think of one other place where followers of a science build their vacation homes together: Scientist's Cliffs, Maryland. Are there others?

The books are well-produced, well-illustrated, and reasonably priced. The rare misspellings won't cause any problems. But use an actual map rather than trust a statement like "15 miles southeast" because it might not be southeast.

Science people should consult these both for novel day-trips in their own areas, and for sights to visit while traveling. I tallied the listings I've visited so far: 36 of 57 in the Astronomy/Space volume, but only 25 of 92 in Physics/Chemistry. I'm going to enjoy some more sights!

Novice Astronomy Over 50 Years

© Norman Sperling, July 5, 2011

A presentation I saw on how to get into amateur astronomy showed how much has changed in the half-century since I began ... and how much hasn't. Amateurs from the Phoenix and San Jose areas explained the ins and outs to science fiction buffs at Westercon.

Stars, planets, and humans are still the same, so the principal advice is still to go somewhere dark (away from light pollution), and learn the constellations and how the sky moves. That advice is absolutely identical to what I was told in 1957, and it's right. They mentioned some recent and classic beginner books, as well as the latest 'pod apps. Light pollution is now a lot worse, so getting to a dark place is much more difficult, but the advice is the same.

The second advice is still to not dive into buying a big, complicated, expensive telescope. After the naked eye, use binoculars. After binoculars, a useful beginner telescope is now available for as little as $50 or $60. That price is relatively lower (considering inflation) than in my youth - an advantage of modern design and production. Then and now, beginners must be warned away from flimsy, incompetent, disappointing telescopes from non-specialist merchants.

They still recommend Sky & Telescope and Astronomy magazines. (OK, the latter was founded in 1973.) They still recommend finding your local astronomy club and star parties, and using red-light flashlights to preserve night vision.

They still recommend studying the richest and most informative telescope catalog – though that used to be Edmund's and now it's Orion's. The lust generated by seeing all the glorious equipment used to be called "aperture fever" and is now "Telescope Porn".

Modern optical and electronic technology has outmoded the old equipment, and enabled whole new categories of activities.

The Dobsonian Revolution made far larger telescopes affordable to serious amateurs, and they can observe deep sky objects spectacularly better than 50 years ago. Today's top Schmidt-Cassegrains, Maksutovs, and refractors deliver markedly better images than you could buy 50 years ago. Some astronomers love automatic object-finding telescopes because it's easier to observe what you want; purists consider it cheating if you don't point the telescope correctly yourself.

Electronic imaging has popularized incredible tools like webcams. Commercial mounts now mate phone-cameras to telescopes. Software now lets photographers stack multiple exposures using more skill and time than money. The best amateur astrophotography of 2011 far surpasses the best that the big professional observatories could do just 30 years ago. These tools enable amateurs to study, and make discoveries about, far fainter objects than before.

One aspect that hasn't changed is the mindset that "amateur astronomy" = observing. That wasn't true 50 years ago and it's less true today, but it's what springs to mind. Lots of non-observational aspects are wide open – history, education, tourism, and telescope making are just a few popular options. Data-mining now combs and analyzes enormous amounts of data, usually gathered by professionals. Anyone competent with a computer and an internet connection can do this. Some such projects are called "Citizen Science".

Overall, getting to a dark sky is markedly harder nowadays. Learning the sky and climbing above beginner status are about the same. But optical as well as electronic technology have improved spectacularly. Far greater viewing and computing power are affordable, and projects to use them multiply very fast. Nowadays the limiting factor isn't telescope size, or imaging skill, or computing talent, but the creativity to think up a new project. Go for it!

The Journal of Irreproducible Results
This Book Warps Space and Time
What Your Astronomy Textbook Won't Tell You

Your Cart

View your shopping cart.